Descriptive Set Theory
Lecture 26

Classitication problems.

Lit X be a collection of arathenaticd objects (seg, Rienam iartacos, mearce-pres automorphisa, (*.algebras,..) and let E be an equivaleces celation on X (e.g, isomorplisen). A (lansification probtion is to understand the objects in X up to the equir ael. E. Ileall, we would like bo have a "reasoncble" assigmat

$h: X \rightarrow \mathbb{R}$ lor sone other nice space, e.g. $Z^{\mathbb{N}}$)

$$
x_{1} E x_{2} \Leftrightarrow h\left(x_{1}\right)=h\left(x_{2}\right) .
$$

Objects arisimg in cualy h_{c} subjects, sulte as analysis, differential geonety, harmonic annalssis, dyuanies (neasunable, topological, imooth), opecator algehress (C^{*}, von Nenwanne), and furctional analysis, can often be encoded into a Polish space, i.e. X is Polife. For exaple, we already law tht $K\left(\left[0,17^{1 N}\right)\right.$ and $F\left(\mathbb{R}^{\mathbb{N}}\right)$ can be thought of as the Polishe rpaces of coupnect sefarable ipaces d of Polish spaces, resp.

Morcover, the en. ael. E that we care about we unst otkn analytic (as sabuets of X^{2}) become thay we defied wing an existential quantifyier over a Polish followed by southing Boed. As for the assignouent h, one can alwags use axiem of boice to pick a point troo each dars al yet a desieced functien to \mathbb{R} by cardisulith cossideratious. Deananding h to be untinoons is too anch leze then building 4 may be obsitcucted b, he top on X dich has wothin, to do vith the anplexity of the closification poblem, i.e. he couplexits of E. $S_{\text {? }}$ we demand h to le Bored.

Def. An ey. re. E on a stond. Boal pare X is called concectily damitiable (ar smooth) if ∂ Borel rechuction h of E to equality $=\mathbb{R}$ on \mathbb{R} (esuiv. any othe uncthl st. Boul space), i.e. $\exists L: x \rightarrow \mathbb{R}, t . \forall x_{x}, x_{2} \in t$,

$$
x_{1} E_{x_{2}} \Leftrightarrow h\left(x_{1}\right)=h\left(x_{2}\right) .
$$

I. oter vords, h lesendes to an enbedding $x / E \in \mathbb{R}$.

More yenecally, solving a clanitication problen E or X weans to cumerstand the "Bonel cardinalif" of X / E, i.. we say $|X / E| S_{B}|Y / F|$, whee B stonds for Brel, if ∂ Bond unap $~ h: X \rightarrow Y$ that lescends t an ingetion $X / E \leftrightarrow Y / F$. Is paticalar, for E on X, X / E ung larger Burcl curclinalits than X.

Def. We suy hat an uy. nel. E on a st. Boel X is Bovel reducible to an eq. nel. Fon a st. Bor. Y, if \exists Borel recluction h of E do F, ie. $\exists L: X \rightarrow Y$, t. $\forall x_{1}, x_{2}+X$,

$$
x_{1} E_{x_{2}} \Leftrightarrow h\left(x_{1}\right) F h\left(x_{2}\right) .
$$

In oher vords, h descends to an eubedding $X / E \leftrightarrow Y / F$. We denote this by $E \leqslant B F$.

The study of Boal rechacibilitg of analytic as. rel. has becone its own subject the provides colonitication and anti-clansification zssilts to the aforementioned vicas of watth. This happened in the last 30 gears, initiated 4) Alexander Kechcis, A. Lonvean, Grey Hjorth, and othes.

Note that if E on X is suooth then E is Bosel (as a subsit of X^{2}): $E=\tilde{h}^{-1}\left(\Delta_{\mathbb{R}}\right)$, shere $\Delta_{\mathbb{R}}=$ diagoanal al $\tilde{h}\left(x_{1}, x_{2}\right):=\left(h\left(x_{1}\right), h\left(x_{2}\right)\right)$, so \tilde{h} is Bovel.
This "wens"s" the the is a cithl algorith i.t. given $x_{1}, x_{2} \in X$, detecmises chethe $x_{1} E x_{2}$. In fact, re can tatee a sequence of yes/ao Bonel questions s.t. $x_{1} E x_{2}$ iff x_{1} al x_{2} 's ansuers to Vase gacstions are the sare:

Prop. E on X is snoth $\Leftrightarrow \nexists$ Bouel sets (guestions) $X_{a_{i}^{c}} Q_{n} \subseteq X$ s.t. $\forall x_{1}, x_{2} \in X$,

$$
x_{1} E x_{2} \Leftrightarrow \forall_{n}\left(x_{1} \in Q_{n} \Leftrightarrow x_{2} \in Q_{n}\right)
$$

Q_{0}^{c} Proof. $<$. We define a Bonel reduction of E $a_{0}{ }^{c}$
to $=z^{N}$ by: $x \mapsto\left(a_{n}^{x}\right)_{n}$, here
$a_{n}:=\left\{\begin{array}{ll}0 & \text { if } x \notin Q_{n} \\ 1 & \text { if } x \in Q_{n}\end{array}\right.$ Incleed,
then $\left(a_{n}^{x_{1}}\right)_{n}=\left(a_{n}^{x_{2}}\right)_{n} \Leftrightarrow x_{1} E x_{2}$.
\Rightarrow Inppose a Boal coducton $h: X \rightarrow 2^{N}$ of $E t_{0}=z^{(N)}$. Define $Q_{n}:=h^{-1}\left(\left[+*+\ldots+\frac{1}{h}+\ldots\right]\right)$.

Examples of smooth eq. el.
(a) Isomorphism of fire gen. abel- yes. Firstly, we anode all (tl gps with the underling set \mathbb{N} into a Polish space as follows: a group P or \mathbb{N} is a stenchare (\mathbb{N}, \cdot) where \cdot is a binary op, satisfying so e axioms. Replying . by its graph, ie. a ternary ablation $R \leq \mathbb{N}^{3}$, we get a relational structure $(\mathbb{N}, R$.$) , so P$ can be decoded frow R.. R. $\in 2^{\left(\mathbb{N}^{3}\right)}$ al those R. $\in 2^{\left(N^{3}\right)}$ WA satisfy the group cxions ten a losel ut. Thus, $\sigma_{p}(\mathbb{N})$ is a coupact Polish space. The spacelvat fir. gen. abel sp form a \sum_{3}^{0} subset of $C_{p}(\mathbb{N})$, hence it's a st. Boer l space. We know foo- algebra the eve 3 fin, gees. ch. Sp P is som. Do a sp of the form $\mathbb{Z}^{n} \times($ tina .aha. sp $)$. Taurus at the the -ap $\Gamma \mapsto(n$, finabgp $)$ is, Bowel, cituening the smoothness of the isom. rel. on FCA. ${ }^{\left(n^{2}\right)}$
(b) Let $M_{n}(\mathbb{C})$ be the (Polish) space of all $n \times 5$ couple -atrices. kt \sim denote the similarity of matrices, ie.
matrices $A \sim B \Leftrightarrow A, B$ ane corjegate

$$
\Leftrightarrow f^{\prime} Q \in G L_{n}(C) Q A Q^{-1}=B
$$

By bef, \sim is an wanalitic en. eel.
Ltting $J(A)$ denote the Jordan caronical hor of A, me huen trom lin. als. Wht $A \sim B \Leftrightarrow J(A)=J(B)$. Again, one can show U_{t} the wap $A \mapsto S(A)$ is Bovel, vittressing the snoothaess (hence also (Boulmon) of \sim.

Prop. Let E be an eq. ael on a Polich X. It E is gencrically eis. (ic. E-inv. Booll sths we neasee ar coreager) and cach E-clan is wreager, then E is nonsunoth. Sinilarly, if E is r-agodic I ench E-dam is μ-uall, for soe Borel measane μ on K, then E is noninooth.
Prod. To pore both at one, call meager/null uets small.
Kprose $\in S$ shooth, so \exists Bonel $h: X \rightarrow 2^{\mathbb{N}}$ s.t. $\forall x_{1}, x_{2} \in X_{1}$

$$
x_{1} E x_{2} \Longleftrightarrow h\left(x_{1}\right)=h\left(x_{2}\right),
$$

i.c. L is contant in each E-clon, in particularer, $h^{-1}(B)$ is Einvaciant Bonel, for eanh $B \leq 2^{N}$. Thas, $h^{-1}(B)$ is suall or cosmall. Call an $s \in 2^{<N}$ heavy if $h^{-1}([s])$ is cosuall. If s is heavy then \exists (unigue) $i \in\{0,1\}$ s.t. si is heary. Start with \varnothing, which is hereug al wase it lown to $x \in 2^{N}$, follxing the wavy Rild. But $\{x\}=\bigcap_{4}\left[\left.x\right|_{n}\right\}$ so $h^{-1}(x)=\bigcap_{n} h^{-1}\left(\left\{\left.x\right|_{L}\right\}\right)$ is cosmall, hat $h^{-1}(x)$ is at most one E-chen, Mich is small, a coutcacliction.

Exngles: $E_{\mathbb{Q}}(\mathbb{Q} \gtrdot \mathbb{R}$ by tionslation), ireational cotution ane uonimoolh. So is \mathbb{E}_{0} on $2^{i N}$ defined b_{s} $x \mathbb{E}_{0} y \Leftrightarrow \forall_{n}^{\infty} \quad x(n)=s(n) \quad$ (eventad agalith). Note tht if $\mathbb{E}_{0} \leq_{B} E$, then E is also won ruooth (othernise, copposition would wituen swoothues of \mathbb{E}_{0}). Turss out, this is the only obstiction to snootheres for Boul ey rel.
\mathbb{E}_{0}-dichotomg (Kechris-Harricyton-loweana) For an Bocel ey. rel. E on a $i t$. Bonel X either E is suooth, i.e. $E \leq_{B}=2^{N}$. or $\quad \mathbb{E}_{0} \subseteq_{B} E$.

This showe tht \mathbb{E}_{0} is the minimun element anong nonsmooth Bonel ey. sel. This dich gevecalites earlier Thans of Glima al Effros, ro it is afercel as the generclized Glimm-Effros diclutong.
the original proof of this dichatons ases effective esscriptive theorg, i.e. a tiver top. on X that womes tron Turing unchines.

